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THE HAMILTON-JACOBI EQUATIONS 
REDUCIBLE TO CANONICAL FORM* 

A.A. BEKOV 

Novel integrable cases of the Hamilton-Jacobi (HJ) equations are obtained. 
A method of reducing a class of non-autonomous dynamic systems to 
canonical form is given, and cases of their integrability are indicated. 
Comparison theorems art? presented enabling the integrability of a dynamic 
system to be determined by observing the form of its Hamiltonian. The 
case of two bodies of variable mass in a resisting and gravitating medium 
are studied as an example. 

1. The integration of canonical equations of motion is reduced to finding the complete 
integral of the corresponding HJ equation. The most interesting cases from the point of view 
of practical applications arethecasesofintegrabilityofth@HJ,LiouvilleandSr;ickel equations 
/l/ and their generalizations /2/. We shall establish new cases of integrability of the HJ 
equation of the form 

which generalize the result obtained by Yarov-Yarovoi /2/ and include the cases of integrability 
of Demin /3/, Liouville and Stackel /l./. 

Theorem 1.1. If the Hamiltonian is given bythe formula 

‘Ji = pi’ - cjy (j = 4, 2, . * ., k g a) 0.4) 

where ai,bi, Ui,@,,cPij are arbitrary continuous functions and aj#O, 690 and Gzl, are 
differentiable functions of the variables Qt, yI Crj,Cpl are continuous functions of time and cj 

are arbitrary constants, then the HJ equation has a complete integral 

*,?rikl.Matem.!~ekhan.,50,5,717-726,1986 



where h and ai are arbitrary constants and 

a, +az + . . . + a, = 0 

Proof. We will seek a solution of the equation 
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(1.5) 

(1.6) 

(1.7) 

~~[~(~-~~j~)2~Ui]-~uj(Dj+mo+~=o 

i=l j=l j=l 

in the form (1.5) where W is an unknown functions of Q~,~~,...,Q,,. By virtue of (1.31, (1.4) 

we arrive at the equation 

-Ui+i Q,-bhbi j_lcJ ‘3 ]=o 
which has the solution (1.6) where the constants C(~ satisfy condition (1.7). It remains to 

confirm the condition 
Det 11 PV/3qida, 11 # 0 (1.8) 

We have 

since the functions Cpj and @Dj/@i are continuous and according to the condition ai # 0, b # 

0, which completes the proof. 

Corollaries. lo. If Cj=O(j=1,2,...,1<k) in (1.4), i.e. Uj=(P'j and ~j(q)are 

arbitrary continuous functions, then the summation over j in (1.6) is carried out from j= 

1+1 to j=k. 
2O. If all cj = 0, then @,, = 0, CD, = (D, 0j = 0 (i = 2,..., k) yields the integrable case 

of /4/. 
3O. Putting in (1.2) all mj = 0, we obtain the integrable case of /2/, and assuming also 

that y = const and 0, = 0, we arrive at Liouville's theorem /l/. 

Theorem 1.2. Let n (n + 1) functions (PiI (pi) and Ui(qi) (i,j = 1, 2,. . ., n) be given, for 
which the determinant A = 11 cpij(qi)II f 0, as well as the continuous differentiable functions 

@, (%, q2, . . ., CL) (i = 1, 2, . . ., k) and continuous function of time Y, CPI, ~1, % (i = 1, 2, . . ., 4. 
Then, provided that the Hamiltonian is given by the formula 

A,=++ mjci Acoxj (it) 
i=l, 2, . ..( n 

1 i=l j=l,2 9 .‘., k 

a/ = ‘pi’ -ciy (j=1,2,...,k,<n) 

and every coefficient ai, bi,Qi, depends only on the corresponding qi and ai # 0, the HJ 

equation has a complete integral of the form (1.5), where 

(1.9) 

(1.10) 

(1.11) 

W= i S[ai (bi + XJ~ + Zkqil- 2 i cjm<, + ji ajq,l)]"' dqi (1.12) 
(=I j=l 

(h a,, . . ., a, are arbitrary constants). 

Proof. We will seek a solution of the corresponding equation in the form (1.5). Taking 

into account (1.10) and (1.11) and using the identity 



we obtain the equation 

whose solution is (1.12). It remains to confirm condition (1.8). Here we will assume that 
a, = h. For the solution V obtained we have 

Corollaries, lo, If cj=O(i=1,2,...,Efk) in 11.11), i.e. "j =~j*[(i"1,2*...,E) 

and 'Bj(Q)(j=1+Z,..*,I) are arbitrary continuous functions, then the summation over j in 
the first sum of (1.12) is carried out from j = E i_ 1 to j = k. 

2O. If all cj = 0, then @, = 0,19, = cP,Qj = O(j = 2,3,. . .,k)leads to the integrable 
case of /4/. 

3O. of @*=O(j=1,2,.. .,k) in (1.91, then we have the integrable case of /2/. Putting 
oji, = 2,~~ = O(j = 2, 3, . . ., k),c, = O(j = 1, 2, I . ., k), @, = 0, y = const we arrive at the theorem 
due to Demin /3/ which generalizes the Stdckel and Moiseyev theorems /S/. The integrable 
case of StPckel jl/ corresponds to "Dj se 0 (j = 0,1,. ..,k), bi f 0, y = cons& ai = con.% in 
formula 11.9). 

2. Let the motion of a system with n degrees of freedom be described by the equations 

4t * = dffii7pi* pi’ = -8Hidq, 3 ‘pi @.a) 

where v ft) is a given function of time and gij, hi, ti are functions of the coordinates and time, 
and detjl g'jij +O, Here and henceforth the index i will take the values I,&...,?& unless 
indicated otherwise. 

The differential equations of a number of problems of mechanics can be reduced to the 
form (2.1). These include, in particular, systems with dissipative forces, some problems of 
the mechanics of controlled motion, the mechanics of bodies with variable mass and composition 
in the presence of reactive forces, etc. /6-8/. 

Lemma 2.1. Using the substitution 

pi = pi** (t)B 4 (t) = OXp (J Vdt) 

we reduce system (2.1) with Hamiltonian (2.2) to the form 

qi* = ~~~~l~pi~, pi** = --dH+iaqi 

H’ @, q, P*) = 1I’H (6 qt P (P*N 

Proof. Substituting (2.3) into (2.1) we obtain 

gi' = aejapi, py = - pi aH/aqi 

Using (2.5) we obtain from (2.2) 

where aij(1,g),B,(t,q), C&q) are the corresponding derivatives of the coefficients of the 
Hamiltonian (2.2) with respect to the coordinates qt. 

Let us consider the first qroup of equations in (2.6). Using (2.5) we obtain 

(2.3) 

(2.4) 

(2.5) 

G-V) 

(2.7) 
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which proves the lemma. 

According to Lemma 2.1 a system of the form (2.1) can be reduced to canonical form by 

substituting the moments (2.3). As a result, the Hamiltonian H* has the following structure: 

(2.9) 

g *ij =ggij, h*i _ hi, U* = Q?J (2.10) 

and det 1) g*ijII # 0. 
Let the canonical 

can determine in which 

system (CS) (2.4) be integrable. Then by virtue of (2.3), (2.10) we 

cases the dynamic systems of the form (2.1) are integrable. 

Theorem 2.1. If the CS (2.4) with the Hamiltonian H* (2.9) is integrable, then so is the 

system (2.1) with the Hamiltonian H whose coefficients g'j, h',U are given by the formulas 

(2.10), and the general solution of system (2.1) has tne form 

aviaa, = pi, pi = I~'aV&, (2.11) 

where v (t, !I~, &, . . ., cl,,, al, . . ., a,)is the complete integral of the HJ equation of the reduced CS 

(2.4) and ai,/3i are arbitrary constants. 

Thoerem 2.2. Let the CS (2.4) be autonomous and integrable. Then the non-autonomous 

system (2.1) will also be integrable, provided that the coefficients g"',hi,U and the 

Hamiltonian H have the form 

gij -+-l (t)g*ij(q), hi= h*'(q), u=+(t) u* (q) (2.12) 

and the general solution of the system (2.1) has the form 

av/&z, = pi, pi = *awaqi, v = --cc,t + w (q, a) (2.13) 

where V(t,q,a) is the complete integral of the HJ equation of the autonomous CS (2.4). 

The proofs of the theorems 2.1 and 2.2 follow from the fact that systems of the form (2.1) 

can be reduced, in accordance with Lemma 2.1, to canonical form. 

Let the structure of the Hamiltonian H be such that h' = 0. Then the following theorem 

holds for systems (2.1). 

Theorem 2.3. Let the CS 

qi’ = aHlap,, pi* = -aHiaqi (2.14) 

H=+ 2 g’jp,pi- u 

i, j=* 

(2.15) 

be integrable. Then the system 

pi’ = aH,iapi, pi’ = -aH,ldqi + ~pi (2.16) 

HI=+ 2 djP*Pj - y (t) u 
1. j=l 

(2.15) 

will also be integrable provided that the following relation holds: 

Y = y’l(2y) 

Proof. Let the HJ equation of the system (2.14) 

(2.18) 

+t gijp,p j - u + p = 0 
t &I ‘p=+’ p,=+ 

I, j=l 

(2.19) 

be integrable by the method of separation of variables and have the complete integral s = s, 

(t,a) j- w (q,ct). According to Lemma 2.1 system (2.16) can be reduced to canonical form and tne 
corresponding HJ equation has the form 

+t gijp,*pj* _ + u + + p* = 0 

i, j=1 

cp* =2$ ( p,* = $) 
1 

(2.20) 

If condition (2.18) holds then, by virtue of the integrability of Eq.(2.19), Eq.(2.20) 
whose complete integral is 
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v = s l/y 2 at + w (4, a) (2.21) 

is also integrable, and the general solution of system (2,16) has the form 

dV/dai = pi, pi = ~f~awlaqi (2.22) 

c0roilary. If system (2.14) is autonomous: gij = &"j (r& u = U (& H = h = const and 

integrable, and the complete integral S = --ht + W(q,h,a), then the non-autonomous system 
(2.16) is also integrable and the complete integral 

V=-hSfydt+W(q,h,CL) 

The converse theorem can also be proved. 

Theorem 2.4, Let system (2.16) with the Hamiltonian (2.15) be integrable. The the CS 

(2.14) with the Hamiltonran (2.17) where the quantity y is replaced by 'i/y is also in- 

tegrable, provided that the following relation holds: 

(2.23) 

Proof. According to Lemma 2.1 system (2.16) can be reduced to canonical form (2.4). Let 

the corresponding HJ equation 

be integrable using the method of separation of variables, and possess the complete integral 

V = v,(t,a) f W(q,a). The HJ equation for CS (2.14) has the form 

Let condition (2.23) hold. Then, since Eq.(2.24) is integrable, so is Eq.(2.25f whose 

complete integral is 

The general solution of system (2.16) has the form 

W/&Xi - &, pi = exp (5 vdt) awja4, 

and the general solution of CS (2.14) is 

asidaf = fir, pi = aw/dq, 

Corollary. If system (2.16) can be reduced to the autonomous form g 
*ij - g*'j (q), u* = 

U* (Q), H* = h = const, is integrable andthe complete integral V = --ht -+ W(q,a), then system 

(2.14) is integrable and the complete integral 

S = - h 5 exp (- s vdt) dt -+- W (q, a) 

Theorems 2.3 and 2.4 enable us to compare the canonical systems with systems reducible 

to canonical form and determine their integrability from the form of the Hamiltonian. The 
theorems on integrability of the systems which can be reduced to canonical form given above, 

and the comparison theorems, together provide the basis for separating out the classes of 
autonomous and non-autonomous integrable systems determined by the coefficients g'j, hi, U of 

the Hamiltonian functions and the relations (2.10) connecting them. 

3. Let us consider non-autonomous dynamic systems of the form (2.1) of the Liouville 

and SGckel type. Let the Hamiltonian of system (2.1) have the form 

,(3.1) 
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where the notation of (1.2) is used. Then the Hamiltonian of the reduced CS (2.4) will have 

the form 

(3.2) 

Returning now to the results of Theorem 1.1 we shall point out cases when systems (2.1) 

with the Hamiltonian (3.1) are integrable. 

Theorem 3.1. If the following conditions hold for the system (2.1) with the Hamiltonian 

(3.1): 
n 

bOj = x % (QJ9 Y’ 
Y=T, -cc,y 

i=l 
(j=1,2,...,k) 

then system (2.1) is integrable and its general solution has the form 

tWli?ai’ = fJi, pi = l/i?iVlf3qi 

where at', f3i denote 2s arbitrary constants and 

(3.4) 

(3.5) 

is the complete integral of the reduced CS with the Hamiltonian (3.2), and 

a r' = h, ai' = ai (i = 2, 3, . . ., n),a, = - (a, + a8 + . . . + a,) (3.6) 

Theorem 3.2. Let the following conditions hold for system (2.1) and the Hamiltonian 

(3.1): 

Y’ 
v=%y’ 

o,=~j-&(In$&) (j=l,&...,k) 

Then system (2.1) will be integrable, its general solution will have the form (3.4) and 
the complete integral of the reduced CS with the Hamiltonian (3.2) will have the form (3.5) 

where all c,=O(j = 1,2,...,k) and relations (3.6) also hold. 

The proof of the theorems follows from Lemma 2.1 and Theorem 1.1. 

Let the Hamiltonian of system (2.1) have the form 

(3.8) 

where the notation of (1.9) is used. Then the Hamiltonian of the reduced CS will be equal to 

~*=~~[~(p,*-~~~)a_$Aibi]-~~~j_~~$iC’,+~ 
i=l j=l j=l i=l 

(3.9) 

The following theorems hold for systems (2.1) with the Hamiltonian (3.8). 

Theorem 3.3. Let system (2.1) have a Hamiltonian H of the form (3.8). Then, provided 

that the conditions 

(i= 1, 2, . . . , k) 

hold, system (2.1) will be integrable and its general solution will have the form 

(3.10) 

(3.11) avlaai = $*, pi = r/~tWlf?q,. a, = h 
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(3.12) 

is the complete integral of the reduced CS with the Hamiltonian (3.9). 

Theorem 3.4. Let system (2.1) have a Hamiltonian N of the form (3.8). Then, provided 
that conditions (3.7) hold, system (2.1) will be integrable, its general solution will have 
the form (3.11) and the complete integral of the reduced CS with the Hamiltonian (3.9) will 
have the form (3.12) where all cjmO(j = %,Z,...,k). 

The proofs of the theorems follow from Lemma 2.1 and Theorem 1.2. 

4. Examples + lo. We shall illustrate the general method of reduction to canonical form 
and Integration of dynamic systems by considering the problem of two bodies (material points) 
of variable mass, which may find application in celestial mechanics /9/. The bodies attract 
each other in accordance with Newton's Law and are situated within a gaseous or dust cloud 
exerting additional "frictional" forces and Hooke's elastic force. The equations of motion 
have the form 

r" = - p (t) r-% + Y (') I' -i_ x(t) r, )I (0 = GM(t) (4.1) 

where G is the gravitational constant, M(t) is the mass of the two bodies, Y, x are continuous 
functions of time characterizing the background, and c is the radius vector of the motion of 
one material point relative to the other. Using the spherical coordinates r,rp,h we can write 
the equations of motion (4.1) in the form (2.1) , using the results of Lemma 2.1. The correspond- 
ing HJ equation will have the form 

(4.2) 

Let the conditions 
il/lJ;? = PO, xi*- = x0, V = 1"'/(21") 

hold. Then Hq.(4.2) can be integrated and its complete integral will have the form 

(4.3) 

where a,,a,,a, are arbitrary constants. The general solution of problem (4.1) will be given 
by formulas of the form (2.11). 

We note that problem (4.1) is integrable when the potential is of a more general type 

where f(r). (D(q), sb(I,) are arbitrary differential functions. Carrying out the same arguments 
for problem (4.1) with the potential (4.51, we obtain the complete integral V of the correspond- 
ing HJ equation 

(4.6) 

The general solution of the problem will be given by formulas (2.11) where the complete 

integral V has the form (4.6). The solution obtained generalizes the results of /9/ to the 

case of a potential of general type (4.5) for a gravitating and resisting medium. 

20 . Let us consider the motion of a passively gravitating point in a gravitational field 

of two bodies M,(t) and M,(t) of variable mass, moving along a straight line passing through 
the centres of mass. We take into account the influence of the gravitating medium generating 
additional forces acting on the material point, analogous to "frictional" forces, and Hooke's 
elastic force. The motion of the attracting bodies themselves is determined by the Gil'den- 
Meshcherskii problem which has linear solutions /lo/. Let the masses M, and MI vary with time 
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according to the same law. 

The equations of motion of a point in a rectangular system of coordinates with origin at 

the centre of mass of M, and M, and z axis collinear with the line of motion of bodies with 

finite masses, will be written in the form 

r"=gradU+ vr'+fir (4.7) 

where r is the radius vector of the point, v (09 B P) are continuous functions determining the 
parameters of the gravitating medium, the potential has the form 

u = PI/r, + Ir,lr*, pi=GMi(t) (i=1,2) 

and rI,rs are the distances between the material point and the attracting bodies. 

Using the notation of /4/, we shall write Eqs.(4.7) in the form (2.16) where 1 = 1, 2,3, 
and the Hamiltonian has the form 

and the coordinates ii,n,w are regarded as generalized coordinates Qi (i = 1, 2, 3). 
According to Lemma 2.1 system (2.16) can be reduced to the canonical form 

qi’ = dH*/dp,*, Pi*’ = - afI*/aq, (i = 1, 2, 3) 

H* (& 4, P’) = W’H (4 9, P (P’)) 

Let the following conditions hold: 

(4.8) 

(4.9) 

The Gil'den-Meshcherskii problem determining the motion of the bodies M, and M, admits 

of the following linear solutions /lo/: 

Q2 =P-%, h# = - vu/b., bo # 0, b, = 0 (4.10) 

r,% = (3b1@$r’50, bl # 0; < = 5 ~2 dt 

Assuming P 0) to be given, we can determine the function v(t), p (t), ‘p (t), up (0, according 
to /lo/, from the conditions of integrability of (4.9), taking (4.10) into account. As a 
result we obtain for b, = 0 

and for b,+O 

(4.11) 

(4.12) 

Formulas (4.11) and (4.12) determine two classes of solutions of the bounded linear 

problem of three bodies of variable mass, taking into account the gravitating and resistive 
medium. 

The complete integral of the HJ equation of the CS (4.8) has the form 

and C = 0 when k # 0; C i 0, C, = C, when k =O;h,a,,a, are arbitrary constants. The functions 
'p. r1.29 $ are given by the formulas (4.11) or (4.12). 

The general solution of the problem has the form CBi are arbitrary constants) 

Bt'/&zi = pi, p, = 11 (t) dl’rdqi (i = 1, 2, 3), a, = h 
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Problem (4.7) was studied for the case when Y=O,~=O in /4, 11/. A spatial-temporal 

transformation method was used in /ll/ to show that the problem can be solved when the mass 

c1 @) varies according to the first Meshcherskii law, and in the case of the generalized 

Meshcherskii law it has a solution when the masses are equal to each other pl= pz. A solution 
oftheproblem was obtained in /4/ using the Jacobi method for the case when the mass change 

obeys the first Meshcherskii law. 
We shall now state the following, more general result. Assuming that the functions 

IL (t), rla (t) are given, we obtain from the conditions of integrability (4.9) the expressions 

y(t) = '12 (Qz'/Qz + P./P) (4.13) 

B (t) = r12"/r,2 - I:2 (rm'jr12 i P'/P) rlz'hz - SCC,'& 

and in (4.13) C=O when k # 0. This implies that the equations of motion (4.7) can be 

integrated for any specified, continuously differentiable functions p (t), rip(t) which do not 

vanish within the time interval in question, provided that v(t),p(t) can be found from formulas 

(4.13). 
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